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The problem of the decay of an initial discontinuity(the Riemann problem) is studied for a substance with
abnormal properties when the rarefaction waves get a shock form, whereas the compression waves become
nonsharp with the width proportional to the distance traveled. Such a situation is inherent to matter in a
near-critical thermodynamic state and is also met in many other physical systems. The behavior of pressure
jumps is compared for the van der Waals equation of state and for its more realistic three-parametric modifi-
cation. It is shown that the evolution of the rarefaction and compression waves is strongly dependent on the
value of the fundamental gasdynamic derivative determined by the equation of state. We demonstrate that for
some substances with abnormal properties both rarefaction and compression waves can keep a shocklike form
for a long period of time after discontinuity decay.
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I. INTRODUCTION

Recently it has been shown that, under ultrashort-pulse
laser ablation of solids, the rarefaction shock wave(RSW)
can be formed in laser-induced plumes[1,2]. An intriguing
picture of the formation of a compressed layer in the ablation
products expanding in a vacuum has been revealed after
RSW reflection from a nonvaporized target surface. There is
a widespread erroneous opinion that RSW’s may be gener-
ated only under exotic conditions such as a substance in a
state near the thermodynamic critical point. However, the
RSW appears to be a fairly general phenomenon which it is
possible to observe in expanding and stationary plasmas
[3–5], particularly in magnetized[6,7] and optically thin ra-
diative plasma[8], in a nonequilibrium vibrationally excited
gas[9], and in binary gas mixtures[10]. It has been specu-
lated that the RSW may be observed under implosions of
internal confinement fusion pellet materials[11] and in stel-
lar envelopes[2]. A fascinating picture is formed in the tran-
sonic flows of inviscid fluids with regions of negative and
positive nonlinearities[12,13]. It has been shown that in
spherical geometry the RSW effects can be even more pro-
nounced than in planar geometry[2,14,15]. It has been sug-
gested that the effects related to the RSW’s may prove to be
important for practical use[16,17] in postponing the phe-
nomenon of choking of real gas flows in pipes[16] and
improving organic Rankine cycle engines[17] due to weak-
ening shock-wave impacts. Thus, a new field of hydrody-
namics of the rarefaction shock waves, suggesting their re-
flection from solid surfaces, interference between them and
with the compression waves, their transformation from a
shock to a widening structure, and vice versa, has invited a
large body of investigation.

The possibility of RSW formation in the vicinity of the
“liquid-vapor” critical point was first predicted by Bethe[18]
and Zeldovich[19] and demonstrated experimentally for the
first time in 1980 by Borisovet al. [20,21]. Let us first recall
that the RSW’s are formed in a matter whose adiabats have a
part with negative curvature that fulfills the condition
s]2p/]v2dS,0 or G=sv4/2ads]2p/]v2dS,0 (p, v, a, and S
are the pressure, specific volume, sound speed, and entropy,

respectively, andG is the fundamental gas-dynamic deriva-
tive introduced by Thompson[22]). So-called Bethe-
Zeldovich-Thompson(BZT) fluids haveG,0 (negative non-
linearity), contrary to classic fluids with positive nonlinearity
G.0 (e.g., perfect gas). When the conditionG,0 is ful-
filled, the velocity of the rarefaction wave becomes super-
sonic (with respect to the sound speed in the unperturbed
medium[21]), leading to the formation of a discontinuity in
the medium parameters which keeps its steepness during
evolution—i.e., to the RSW formation by definition given in
Ref. [19]. At the same time, the compression waves in BZT
fluids become nonsharp with the width proportional to the
distance the wave has traveled. Analytically the evolution of
a single rarefaction shock wave has been considered in Ref.
[21]. One-dimensional numerical studies of the formation
and evolution of rarefaction and compressive waves in BZT
fluids with the van der Waals equation of state(EOS) have
been performed in Refs.[11,12,23] for the shock-tube prob-
lem, particularly with reflection from end walls[23]. Numer-
ous classical and nonclassical effects have been revealed in
such a simple geometry, like composite shocks and splitting
waves. It has been shown that negative nonlinearity can be
realized for materials with different EOS[24]. Recently[15]
we have shown that, for the three-parametric modification of
the van der Waals EOS[25,26] which accurately describes a
wide variety of substances, the RSW behaves differently as
compared to the case with the classic van der Waals EOS[2],
which is worthy of detailed study.

In this paper we present the results of numerical modeling
of the shock-tube problem for fluids with the van der Waals
EOS and its three-parametric modification in the adiabatic
flow case. For these two sorts of fluid, the formation and
evolution of rarefaction and compression waves are com-
pared for the cases withG,0 andG.0. The effect of the
value of the fundamental gas-dynamic derivative on the
wave dynamics is discussed.

II. MODEL

We consider a shock tube of a finite length divided by a
membrane into two equal parts with different pressures of a
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substance filling the tube. In both parts the substance is in a
state near the thermodynamic critical point but outside of the
two-phase region. After instantaneously breaking the mem-
brane, waves of compression and rarefaction are formed in
the substance and we study, in a one-dimensional approxi-
mation, their evolution, reflection from end walls, and inter-
ference. The modeling set of equations includes the com-
pressible nondissipative conservation equations for mass,
momentum, and energy(the Euler equations) [2,11,12]:

]r

]t
+

]

]x
srud = 0,

]u

]t
+ u

]u

]x
= −

1

r

]p

]x
,

]

]t
Se+

u2

2
D + u

]

]x
Se+

u2

2
D +

1

r

]

]x
spud = 0. s1d

Here x is the distance along the shock tube,r is the mass
density,u is the velocity, ande is the internal energy. The
system of equations is supplemented by either the van der
Waals EOS(referred to below as primary)

p =
RT

v − b
−

a

v2 s2d

or the generalized van der Waals EOS proposed by Mar-
tynyuk et al. [25,26]:

p =
RT

v − b1
−

a1

vn , s3d

whereT and R are the temperature and universal gas con-
stant, respectively. The coefficientsa and b are equal to
9RTcvc/8 andvc/3, respectively, with the indexc denoting
the critical parameters. The values of the coefficientsn, a1,
andb1 are determined by the critical factorzc:

zc =
pcvc

RTc
=

n2 − 1

4n
. s4d

From Eq.(4) it follows that n=2zc+Î4zc
2+1 and the param-

eters a1 and b1 are written asa1=aRTcvc
n−1 and b1=bvc

where the coefficientsa=sn+1d2/4n and b=sn−1d / sn+1d
are dependent only onzc and differ from 9/8 and 1/3 pecu-
liar to the primary van der Waals EOS.

A caloric equation corresponding to the particular EOS
closes the system of equations(1)–(4). The system is solved
numerically in the Lagrangian coordinates in dimensionless
form with pc, vc, Tc, L, anduc=ÎTc/M as the characteristic
parameters(L is the shock-tube length andM is the molecu-
lar mass of the substance). The shock tube is divided into
2000 numerical cells, and the explicit difference scheme is
used in which the velocities are calculated at the cell bound-
aries whereas the other parameters are calculated in the cell
centers. This allows us to use only one boundary condi-
tion uuux=0= uuux=L=0 at the end walls. The scheme which is
first order in time and second order in space has been tested
by solving the problem of the decay of an initial discontinu-
ity for the conditions reported in Ref.[12].

The initial conditions were chosen on the basis of analysis
of the p-v phase diagrams shown in Fig. 1 for the general-
ized (a) and primary(b) van der Waals EOS. The boundary
of the region with negative nonlinearity,G,0, is found by
settings]2p/]v2dS=0, which gives the following expression
for the primary van der Waals EOS, assuming the
temperature-independent specific heat at constant volume
c̃v=cv /R [24]:

p̃ =
1

ṽ2S 2s3ṽ − 1d2

ṽ2sc̃v
−1 + 1dsc̃v

−1 + 2d
− 3D . s5d

Here the pressure and specific volume are normalized to the
corresponding critical parameters. For the generalized van
der Waals EOS, the analogous expression takes the form

p̃ =
a

zcṽ
nSnsn + 1d

ṽ2

sṽ − bd2

sc̃v
−1 + 1dsc̃v

−1 + 2d
− 1D . s6d

In the vicinity of the “liquid-vapor” critical point, conditions
(5) and(6) are fulfilled for substances with a reasonably high
value of c̃v. It is known that, as a substance approaches its
critical temperature,cv increases, tending to infinity by a
near-logarithmic law that is true for bothTc,0 andTc.0
[27]. So it is expected that negative nonlinearity is an inher-

FIG. 1. p-v phase diagrams:(a) corresponds to the generalized
van der Waals EOS[25,26] and(b) is for the primary van der Waals
EOS. The critical point(CP) is shown in the top of binodal. Abnor-
mal regions forcv /R=40 are located under the dotted lines where
s]2p/]v2dS=0. A set of comparative simulations was performed for
the abnormal adiabats 1 and 2 and for the normal adiabats 3 and 4.
To compare the adiabat slopes, adiabat 1 is given in(b) by the
dash-dotted line.
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ent feature of a wide variety of substances in a near-critical-
point state. Results will be presented below forc̃v=40. In
Fig. 1, the lines withG=0 are shown by dotted curves for the
chosen value ofc̃v, so thatG,0 under these curves. We
solve the problem for several sets of the initial conditions
corresponding to both abnormal(1 and 2) and normal(3 and
4) adiabats. For the generalized van der Waals EOS, the criti-
cal factorzc is taken to be equal to 0.2(for the majority of
substanceszc lies in the range 0.1–0.3[28,29]), so thatn
=1.477,a=1.0385, andb=0.1926. At the initial time mo-
ment the particle densitiessnl ,nrd and temperaturessTl ,Trd
are distributed uniformly within the volume of the left(index
l) and right(index r) parts of the shock tube, so thatpl .pr.
The values of the initial parameters are given in Table I. The
numbers of variants for the calculations correspond to adia-
bat numbers in Fig. 1. In variants 1 and 2, fluids evolve along
the abnormal portions of the adiabatsAB and CD, respec-
tively.

III. RESULTS AND DISCUSSION

The results of the modeling are given in Figs. 2–6. Fig-
ures 2 and 3 present the comparison of the pressure and
density profiles for the cases of generalized(a) and primary
(b) van der Waals EOS(variants 1 and 2, according to Table
I). The upper graphs correspond to the time momentst /t
=1 (a) and 0.5(b) st=L /ÎTc/Md counted from the decay
start. As, initially, pressure was higher in the left part of the

tube, the rarefaction wave(having the shock form) is moving
to the left. The compression wave is moving to the right wall
and its slope is close to that of the RSW for both EOS(di-
rections of wave propagation are indicated by arrows). The
vertical dashed lines show the location of initial discontinu-
ity (contact surface). In the Riemann problem, the contact
surface is usually seen as a jump in the density profiles(Fig.
3) which is small in the cases presented but can be quite
large as, e.g., in Ref.[11] depending on the initial conditions.
The lower graphs in Figs. 2 and 3 show the pressure and
density profiles formed at the time moments when both
waves have reflected twice from the walls. It corresponds to
t /t=9.6 for the generalized EOS and 5.7 for the primary van
der Waals EOS. At these time moments, the RSW’s are mov-
ing again to the left and the compression waves are moving
to the right walls. The difference in time of passing the same
distance by the waves is explained by the difference in the
slopes of the abnormal portions of the corresponding adia-
bats [see Fig. 1(b) where both abnormal adiabats are given
for comparison], characterizing the speed of sound and,
hence, the wave velocities. A noticeable difference has be-
come apparent between the waves in the fluids with the dif-
ferent EOS. For the primary van der Waals EOS, the waves

TABLE I. The initial conditions used in the present calculations.
Indicesl and r refer to the left and right parts of the shock tube.

Variant ñl T̃l
p̃l ñr T̃r

p̃r

(1) 0.797 0.998 0.983 0.571 0.989 0.902

(2) 0.904 1.006 1.02 0.575 0.991 0.888

(3) 1.1 1.05 1.35 0.525 1.027 0.994

(4) 1.1 1.1 1.465 0.524 1.069 0.987

FIG. 2. The pressure profiles in the shock tube for(a) the gen-
eralized van der Waals EOS and(b) the primary van der Waals EOS
for the evolution along the abnormal adiabats 1 and 2, respectively
(Fig. 1). The initial conditions are given in Table I. Coordinates
x/L=0 and 1 correspond to the positions of the end walls. The time
moments are indicated in the figuresst=L /ÎTc/Md. Directions of
wave propagation are indicated by arrows. The upper graphs are
given for the time moments before wave reflection from the shock-
tube end walls and the lower graphs correspond to the time mo-
ments after double reflection of the waves from the endwalls.

FIG. 3. The density profiles corresponding to Fig. 2.

FIG. 4. The successive stages of the decay of the initial discon-
tinuity showing the formation of the rarefaction and compression
waves, their propagation in the tube, reflection from the end wall,
and their first encounter after reflection for the generalized van der
Waals EOS(evolution along the abnormal adiabat 1, Fig. 1).

NONLINEAR HYDRODYNAMIC WAVES: EFFECTS OF… PHYSICAL REVIEW E 70, 036303(2004)

036303-3



behave according to the prediction[19,30]: the rarefaction
wave is a shock wave whereas the front width of the com-
pression wave increases with distance traveled. In the case of
the generalized van der Waals EOS, the rarefaction wave is
sharp enough to be called a shock wave, while the compres-
sion wave is also steep, distinctly steeper than that for the
primary van der Waals EOS(compare the lower graphs in
Figs. 2 and 3). It should be emphasized that this is not a
result of reflection of the waves from the endwalls. The same
picture was also obtained in one-dimensional(1D) modeling
of the initial discontinuity decay in the “infinite” shock tube.

Figure 4 presents the successive stages of the decay of the
initial discontinuity with the formation of the rarefaction and
compression waves, their propagation in the tube, reflection
from the end wall, and their first encounter after reflection
for the generalized van der Waals EOS(variant 1, according
to Table I). The picture is divided into two parts so that the
subsequent profiles do not overlap the preceding ones. After
decay of the initial discontinuity shown at time moment
t /t=0, the rarefaction and compression waves are formed
and move to the end walls as shown by the arrows[Fig.
4(a)]. The compression wave is the first to reach the end
wall, reflects and starts to move back, while the RSW is still
on its way to the respective end wall[t /t=2.4 in Fig. 4(b)].
However, it does not contradict the supersonic nature of the
RSW as defined in Sec. I. After RSW reflection from the end
wall, the waves move towards each otherst /t=2.8–4.0d un-
til they meet att /t=4.6 [Fig. 4(b)] and the pressure profile
becomes converse to that fort /t=0 [Fig. 4(a)] which can be
considered as the formation of a new discontinuity. As a
result of the interaction of the waves, small perturbations can
occur as seen in the profile fort /t=4.6 and in Fig. 2(a),
lower graph. After decay of the discontinuity formed, the
picture of wave formation, their propagation to the end walls
and reflection is repeated. However, both the rarefaction and
compression waves keep the forms of the steep jumps[Fig.
2(a), lower graph].

The nonlinear wave behavior demonstrated above is in-
herent only for abnormal(BZT) fluids with G,0. If a fluid is
evolving through the regions with both normalsG.0d and
abnormalsG,0d thermodynamic properties, the picture of
both rarefaction and compression waves is more compli-
cated, exhibiting wave splitting to the shock and dispersed
parts[12,13]. In the case of a fluid with positive nonlinearity,
the rarefaction and compression waves behave classically,
regardless of the EOS form under consideration. Modeling
was performed for adiabats 3 and 4, which are located well

above the abnormal zones(see Fig. 1 and corresponding
variants 3 and 4 in Table I). The pressure and density profiles
for both the generalized[Figs. 5(a) and 6(a) and primary
[Figs. 5(b) and 6(b)] van der Waals EOS are very similar for
equal distances traveled, though they are presented for dif-
ferent time moments. As discussed above, this results from
the difference in the slopes of the corresponding adiabats for
the different EOS. The upper graphs correspond to the time
momentst /t=0.8 (a) and 0.5(b) when the waves have not
yet reached the end walls after the decay start. One can see
that the compression waves are classical shock waves and
the rarefaction waves are already wide and smooth. The
lower graphs in Figs. 5 and 6 are given for the time moments
of 7.2 (a) and 4.6(b)—that is, after double wave reflection
from the end walls. The dynamics of wave propagation is
very similar for both EOS. After double reflection from the
end walls, the rarefaction waves are fully degraded. Note
that, in the BZT fluid for the same distance traveled, the
compression wave is still steep[Fig. 2(a), lower graph] or
sufficiently narrow[Fig. 2(b), lower graph].

Analyzing Figs. 1–6, one can point out the following.
(a) In fluids with the generalized van der Waals EOS, the

rarefaction and compression waves are traveling slower as
compared to the primary van der Waals EOS. This difference
results from different slopes of the corresponding adiabats in
the regions with the abnormal properties demonstrated in
Fig. 1(b) (lines 1 and 2).

(b) The most intriguing feature is the small difference
between the rarefaction and compression waves for the case
of the BZT fluid described by the generalized van der Waals
EOS[Fig. 2(a), lower graph, and Fig. 4]. Both the rarefaction
and compression waves show the features of shock, though
slight spreading is observed even for the RSW. For the BZT
fluid with the primary van der Waals EOS[Fig. 2(b)], the
RSW keeps sharp while the compression wave is evidently
spreading, as was observed in numerous calculations(e.g.,
[11–13]).

A question arises about the reasons for the similar behav-
ior of rarefaction and compression waves for the BZT fluid
with the generalized van der Waals EOS. The answer is in
the value of the fundamental gasdynamic derivative which
characterizes the convexity of the corresponding adiabat. The
calculations show that the modulus of the maximum negative
value of s]2p/]v2dS in adiabat 1 is about 100 times less as
compared to that for adiabat 2(though it is not evident from
Fig. 1). That is, adiabat 1 is much closer to a straight line
than adiabat 2. Thus, the factor determining the forms of the
rarefaction and compression waves in fluids with abnormal

FIG. 5. The same as in Fig. 2 but for the evolution of fluids
along the normal adiabats 3 and 4(Fig. 1).

FIG. 6. The density profiles corresponding to Fig. 5.
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properties is the extreme value of the fundamental gasdy-
namic derivative reached in the corresponding portion of the
adiabat governed by the EOS. It is necessary to stress that the
modified van der Waals EOS[Eq. (3)] is realistic, describing,
for example, a wide variety of liquid metals[25,26,29]. It
can thus be speculated that there exists a certain sort of fluid
whose state is described by an EOS providing an adiabat
very close to a straight line within the abnormal region[that
is, s]2p/]v2dS>0]. Most likely both the rarefaction and com-
pression waves will be neither shocks nor spreading struc-
tures but will behave similarly to each other for a long time
after their formation until the mentioned fluid is in the region
of the abnormal properties.

IV. CONCLUSIONS

We have carried out a comparative study of the decay of
an initial discontinuity for BZT fluids with two different
EOS. The evolution of the rarefaction and compression
waves is shown to be strongly dependent on the value of the
fundamental gasdynamic derivative determined by the EOS.
It is demonstrated that for some substances with abnormal
properties both the rarefaction and compression waves can
keep their forms close to the shock for a long period of time
after discontinuity decay. Such behavior may be expected for
many substances with a reasonably high specific heat at con-

stant volume, the condition implying many internal degrees
of freedom of substance molecules. On the other hand, in a
near-critical-point state, thecv value increases dramatically
in any substances though this requires a definite time to re-
lax. With fast processes like pulsed laser ablation, whencv
relaxation is open to question[1,2], direct cluster emission
and clustering in the gas phase[31] can lead to negative
nonlinearity development. Whenever possible, the RSW
passing through the ablation plume should break off the clus-
tering process. This can be a way to produce clusters with
predetermined size distribution.

This study opens up a broad spectrum of new problems
concerning BZT fluids which suggests investigations of the
evolution of rarefaction and compression waves, including
reflection from solid surfaces, their interference and transfor-
mation from a shock to a widening structure, and vice versa.
Some examples of such studies are under way.
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